Quantcast
Channel: sponsored – SitePoint
Viewing all articles
Browse latest Browse all 329

Cloud Data Strategies: Preventing Data Black Holes in the Cloud

$
0
0

This article was originally published on mongoDB. Thank you for supporting the partners who make SitePoint possible.

Black holes are regions in spacetime with such a strong gravitational pull that nothing can escape. Not entirely destructive as you might have been lead to believe, their gravitational effects help drive the formation and evolution of galaxies. In fact, our own Milky Way galaxy orbits a supermassive black hole with 4.1 million times the mass of the Sun. Some theorize that none of us would be here were it not for a black hole.

On the flip side, black holes can also be found hurtling through the cosmos — often at millions of miles per hour — tearing apart everything in their path. It’s said that anything that makes it into their event horizons, the “point of no return”, will never be seen or heard from again, making black holes some of the most interesting and terrifying objects in space.

Why are we going on about black holes, gravitational effects, and points of no return? Because something analogous is happening right now in computing.

First coined in 2010 by Dave McCrory, the concept of “data gravity” treats data as if it were a planet or celestial object with mass. As data accumulates in an environment, applications and services that rely on that data will naturally be pulled into the same environment. The larger the “mass” of data there is, the stronger the “gravitational pull” and the faster this happens. Applications and services each have their own gravity but data gravity is by far the strongest, especially as:

  • The further away data is, the more drastic the impacts on application performance, and user experience. Keeping applications and services physically nearby reduces latency, maximizes throughput, and makes it easier for teams to build performant applications.
  • Moving data around has a cost. In most cases, it makes sense to centralize data to reduce that cost, which is why data tends to amass in one location or environment. Yes, distributed systems do allow organizations to partition data in different ways for specific purposes — for example, fencing sets of data by geographic borders to comply with regulations — but within those partitions, minimal data movement is still desirable.
  • And finally, efforts to digitize business and organizational activities, processes, and models (dubbed by many as “digital transformation” initiatives) succeed or fail based on how effectively data is utilized. If software is the engine by which digital transformation happens, then data is its fuel.

As in the real world, the larger the mass of an object, the harder it is to move, so data gravity also means that once your mass of data gets large enough, it is also harder (and in some cases, near impossible) to move. What makes this relevant now more than ever is the shift to cloud computing. As companies move to the cloud, they need to make a decision that will have massive implications down the line — where and how are they going to store their data? And how do they not let data gravity in the cloud turn into a data black hole?

There are several options for organizations moving from building their own IT to consuming it as a service in the cloud.

Proprietary Tabular (Relational) Databases

The companies behind proprietary tabular databases often penalize their customers for running these technologies on any cloud platform other than their own. This should not surprise any of us. These are the same vendors that for decades have been relying on selling heavy proprietary software with multi-year contracts and annual maintenance fees. Vendor lock-in is nothing new to them.

Continue reading %Cloud Data Strategies: Preventing Data Black Holes in the Cloud%


Viewing all articles
Browse latest Browse all 329

Trending Articles